mirror of
https://github.com/meta-llama/llama.git
synced 2026-01-15 16:32:54 -03:00
added remanjg docs
This commit is contained in:
@@ -17,6 +17,21 @@ def main(
|
||||
max_batch_size: int = 8,
|
||||
max_gen_len: Optional[int] = None,
|
||||
):
|
||||
"""
|
||||
Entry point of the program for generating text using a pretrained model.
|
||||
|
||||
Args:
|
||||
ckpt_dir (str): The directory containing checkpoint files for the pretrained model.
|
||||
tokenizer_path (str): The path to the tokenizer model used for text encoding/decoding.
|
||||
temperature (float, optional): The temperature value for controlling randomness in generation.
|
||||
Defaults to 0.6.
|
||||
top_p (float, optional): The top-p sampling parameter for controlling diversity in generation.
|
||||
Defaults to 0.9.
|
||||
max_seq_len (int, optional): The maximum sequence length for input prompts. Defaults to 512.
|
||||
max_batch_size (int, optional): The maximum batch size for generating sequences. Defaults to 8.
|
||||
max_gen_len (int, optional): The maximum length of generated sequences. If None, it will be
|
||||
set to the model's max sequence length. Defaults to None.
|
||||
"""
|
||||
generator = Llama.build(
|
||||
ckpt_dir=ckpt_dir,
|
||||
tokenizer_path=tokenizer_path,
|
||||
|
||||
@@ -15,6 +15,20 @@ def main(
|
||||
max_gen_len: int = 64,
|
||||
max_batch_size: int = 4,
|
||||
):
|
||||
"""
|
||||
Entry point of the program for generating text using a pretrained model.
|
||||
|
||||
Args:
|
||||
ckpt_dir (str): The directory containing checkpoint files for the pretrained model.
|
||||
tokenizer_path (str): The path to the tokenizer model used for text encoding/decoding.
|
||||
temperature (float, optional): The temperature value for controlling randomness in generation.
|
||||
Defaults to 0.6.
|
||||
top_p (float, optional): The top-p sampling parameter for controlling diversity in generation.
|
||||
Defaults to 0.9.
|
||||
max_seq_len (int, optional): The maximum sequence length for input prompts. Defaults to 128.
|
||||
max_gen_len (int, optional): The maximum length of generated sequences. Defaults to 64.
|
||||
max_batch_size (int, optional): The maximum batch size for generating sequences. Defaults to 4.
|
||||
"""
|
||||
generator = Llama.build(
|
||||
ckpt_dir=ckpt_dir,
|
||||
tokenizer_path=tokenizer_path,
|
||||
|
||||
@@ -12,7 +12,14 @@ logger = getLogger()
|
||||
|
||||
|
||||
class Tokenizer:
|
||||
"""tokenizing and encoding/decoding text using SentencePiece."""
|
||||
def __init__(self, model_path: str):
|
||||
"""
|
||||
Initializes the Tokenizer with a SentencePiece model.
|
||||
|
||||
Args:
|
||||
model_path (str): The path to the SentencePiece model file.
|
||||
"""
|
||||
# reload tokenizer
|
||||
assert os.path.isfile(model_path), model_path
|
||||
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
||||
@@ -29,6 +36,17 @@ class Tokenizer:
|
||||
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
||||
|
||||
def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
|
||||
"""
|
||||
Encodes a string into a list of token IDs.
|
||||
|
||||
Args:
|
||||
s (str): The input string to be encoded.
|
||||
bos (bool): Whether to prepend the beginning-of-sequence token.
|
||||
eos (bool): Whether to append the end-of-sequence token.
|
||||
|
||||
Returns:
|
||||
List[int]: A list of token IDs.
|
||||
"""
|
||||
assert type(s) is str
|
||||
t = self.sp_model.encode(s)
|
||||
if bos:
|
||||
@@ -38,4 +56,13 @@ class Tokenizer:
|
||||
return t
|
||||
|
||||
def decode(self, t: List[int]) -> str:
|
||||
"""
|
||||
Decodes a list of token IDs into a string.
|
||||
|
||||
Args:
|
||||
t (List[int]): The list of token IDs to be decoded.
|
||||
|
||||
Returns:
|
||||
str: The decoded string.
|
||||
"""
|
||||
return self.sp_model.decode(t)
|
||||
|
||||
Reference in New Issue
Block a user